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1. Introduction

Let an analytic function f of a single complex variable be defined

in a neighborhood of a point 2z, by means of its Taylor series at z

0] ol

In this paper, we wish to discuss a constructive method for the solution
of the following problem: Suppose it is known that the function f can
be continued analytically into a domain R of the complex plane. It is

desired to compute the value of f at an arbitrary point b e R,

By & constructive method (or "algorithm") for solving a problem
in numerical analysis we mean a sequence of rational functions of the

data of the problem which converge to the desired mathematical object.

In a number of special situations classical analysis offers a
variety of formulas and methods for solving the problem posed above,
such as the Schwarz reflection principle, or the methods of Mittag-
Leffler and Borel (see Bieberbach [1955]). The problem is easily solved
if the function f 1is known to satisfy a differential or other functional
equation. In some cases the problem may alsoc be solved by classical
methods of summability theory (see Hardy [1948]). In a more numerical
vein, Euler's series transformation sometimes proves to be an effective
means of continuation (van Wijngaarden [1953]). Recently, linear pro-
gramming techniques have been proposed for the solution of a special

continuation problem (Douglas [1960}; Douglas and Gallie [1959]).

The above methods apply only in special (sometimes extremely so)
situations. However, the following technique, due to Weikrstrass, is
generally applicable (for a recent exposition, see Behnke and Sommer

[19551, pp. 166-171). We join the points z, and b by a rectifiable
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arc ¥ lyingin R . If 3 > O denotes the distance of y from

the boundary of R , we select N points ZysZgsevesZy T b on ¥

such that |zk = zk—ll <%, k=1,2,...,N. The Taylor series of f

at LY having a radius of convergence > %, enables us to calculate
the values of f and of all derivatives of f at Z . Thus the Taylor

series at =z, 1is also known, and can be used to calculate the coefficients

1

of the Taylor series at the point =z Proceeding in this manner, we

2.

finally obtain the Taylor series at the point =z and thus a fortiori

N’

the solutién of our continuation problem.

Clearly, the above method is not constructive in the sense indicated
earlier. The data in this case are the coefficients of the Taylor series
at z = a. While it is true that the partial sums of the first Taylor
series, and its derivatives, are rational functions of these coefficients,
their limits generally are not. Yet these limits are required to continue
the process. In what follows we shall describe a modification of the
above Weierstrassian method of continuation which transforms it into a

constructive process.

2. Matrix formulation of Weierstrassian analytic continuation.

2 .
Let & + al(z - zo) + a2(z - zo) + be the power series

defining f near Zq5 and let

£(z) = b, + bl(z - zl) + b2(z - 21)2 oo

0
near z,. If lzl = zo| is smaller than the radius of convergence
of the series at 2y, WE have

— 2 L BN ]
by = f(zl) = ay + 58, + 8, Feee,
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% comp—— -

where &, =2 and more generally for k = 0,1,2,...

(1) b =-1—f(k)(z1)

_ 1 k! k + 1)1 2 (k+2)1t }
= { a, + o a +61 51 ak+2+

1 1! k+1
1 k + 2\.1
>6lak+l + ( 5 )62ak+2 Foee,

where ( ; ) denotes a binomial coefficient.

]
I~
o =%
S’

m

=

+
A w

=
o+

We can render these formulas more lucid by the use of matrix
notation. We denote by A(z) the infinite column vector whose components

are the coefficients of the Taylor series at the point =z. For instance,

o) Dq
21 g
A(zo) =1 a, , A(zl)‘ b,

We now define an infinite upper triangular matrix M(z) as follows:

M(z) = (a ) m,n = 0,1,2,...,
where
n n-
a =
mn
0 ’ n <m -
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Written out in full,

1 z z2 23 24 cee
1 2z 3z 423
M(z) = 1 3z 62° .
1 Lz
0] 1

The relation (1) now can be combined into the single relation

(2) A(zl) = M(bl) A(zo).

In a similar manner we find, if Izk - zk—ll is less than the radius of
convergence of the Taylor series at Zyq?
(3) A(zk) = M(bk) A(Zk-l)’ k =1,2,...,N,

where b = 2y - 2y 1® Thus the solution of our continuation problem is
given by

(4)  Alzy) =M(ay) M(sy ;) «== M(5) Azp),

with the understanding that the product is to be formed proceeding from

the right to the left.

The non-associativity of the product in (4) is shown by the following
remark: It is easily seen that the "continuation matrices" M(z) satisfy

the addition theorem

(5) M(z') M(z") = M(z' + z")

for arbitrary complex z' and =2". Since &, + 3 teect b, =z - 2z
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the product on the right of (4) thus is formally equivalent to
M(zN s zo) A(zo). However, this expression is without analytic
content, since it is tantamount to evaluating the Taylor series at

Z for z =gz

0 where it diverges in general.

N,

3 Definition of the continuation algorithm

We denote by Mm (z) the finite matrix consisting of the first

,n
m rows and n columns of the matrix M(z). Similarly, we denote by
An(z) the column vector comprising the first n elements of the vector

A(z). By the symbol Aék) we denote vectors intended to approximate

An(zk).

At first sight, it would seem reasonable to transform the Weier-
strassian method of continuation into an algorithm by forming the

vectors

AiN) - n,n(bN) Mn,n(bN-l) o Mn,n(bl) Aalzg)s

where n = 1,2,.... However, since products of finite matrices are
always associative, and sinece the addition theorem (5) also holds for

the finite segments M this amounts to nothing more than to forming

n,n’

AgN) = Mn,n(zN - ZO) An(zo)’

which is precisely what we obtain by substituting zy - 2, into the
power series defining f at =z = Zqe It thus is clear that if we wish
to obtain a convergent algorithm, the finite segments of the matrices

M(bk) in (4) mst be shosen in a more sophisticated manner.




It is fairly obvious that if convergence is to be assured, the
vectors A(zk) mist be approximated particularly well if k 4is small.
(The truncation error is propagated forward but not backward.) We can
achieve this by replacing the matrices M(bk) by rectangular segments
that have q times as many columns as rows, where q 1s an integer
N)

> 1. We thus are led to defining the approximating vectors Aé in

the following manner: For n = 1,2,..., let

(6) alM =

n n,nq(éN) i 2(6N—1) T

ng,nq

e Mo (e) A ()
nq nq

These vectors evidently depend on the "magnification ratio® gq. For

each n, they can be built up recursively as follows:

{
A'O% = A N(zo),
(") e
(k)  _ (k-1) _
ANk ™Y nae waen(®) A plerr k=1,2,...,N.
ng ng ,nq ngq

be Convergence of the algorithm.

Let r, be the radius of convergence of the Taylor series repre-

k
senting f 1in a neighborhood of the point 2y Ffor Weierstrassian

analytic continuation it is necessary that lbk] = Izk - zk—ll < SR
k=1,2,...,N. Let this condition be met, and let ri be any number

satisfying bk < ri < Ty 1 By Cauchy's theorem there exists a constant

Ck such that

nle
,n ’

Ty

If(n)(zk_l)l < n = 0,1,2,.0..
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Setting p, = |ak I/r}'(, this may be written in the form
p n
n k
£ )(pk_l)l gnl(ﬁk—r) Cr 1= 0,1,2,....

Only a slightly stronger condition is required for the convergence of

the algorithm (7).

THEOREM. Let there exist constants Ck and Pis 0 < Py <1,

such that

P n
® 1@ i e, m=0z,.,

for al]l points 2z on the straight line segment joining 2y .1 and

—
-—

2y (k =1,2,...,N). Then there exists a number qy such that for

all q > qo the elements of the vectors AéN) converge to the corres-

ponding elements of A(zN) as n -+,

The question as to the infimum of all 9 for whiech the theorem
is true is left open. An upper bound for this infimum, however, will

emerge from the proof.

5o Proof of the Theoren.

Letting
(k) _ (k)
Rh - An(zk) - An

(k)

for k¥ = 1,2,...,N and for all values of n for which An

our aim is to show that RiN)

-0 as n +, Qur first goal is a recur-

. k \ . . .
rence relation for Rﬁ ). Such a relation is obtained via a recurrence

relation for the vectors An(zk).

is defined,



nq

0

nq =il
( 1 ) %

' -n+l
SV
plk)

(9) An(zk) = Mn,nq(bk)Anq(zk—l) + ®k n

Then

where ®k denotes a disgonal matrix whose elements are bounded by C

k.
Prcof. By Taylor's theorem,

-

(m+1)
miir © (2 )% +

L o™ (5) = 1 f(m)(zk_l) +

1 (ng-1) gn-m-1
esed mT(nq -m _‘)’1 1 f (zk-l) bk
%k
1 nq-m-1_.(nq)
t Rl - m - 1)1 i (z, - t) f (t)at,
k~1

m = 0,1,2,-..,!1 - 10 It fOllOWS that

An(zk) = Mn,nq(bk)Anq(zk-l)

ng-l

1

oTloa = DT (% - ¥
1 ng-2

TTma =277 (% ~ ¥

+§ k f(HQ)(t) C dt.

k-1 .

1

Caypcrue G A

Formula (9) now is obtained by estimating the integral by means of (8).
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e

R

Subtracting (7) from (9) we now find

R - My nq( ¥ Rég 1 1o plk),

where n runs through all multiples of qN-k. A standard argument

in the theory of difference equations now shows that

NOREEE HORNC

>
k—1 ng ¥

where TTﬁN)= I, and for k =1,2,...,N =1

(k) _
T M) ngloy) M ooy g) M vy nqN-k(°k+1)'

ng,nq ngq

Iy

We shall denote by A the vector or matrix whose elements are
the absolute values of the elements of A, and use a notation such
as A {B to indicate the corresponding inequality between corres-
ponding elements. We then have, in view of Lemmsa 1,

N R
(10) (N) < 2 o TT(k) (kRI_k ,
k=1 nq

where TTﬁN) =1, and for k= 1,2,...,8 -1

00 -

() =+o M

M, ng oy nqN-k-l,nqN-k(5k+1)'

The resulting products of matrices in (10) can be further eptimated by
a reduction formula based on the following result.
LEMMA 2. Let

(11) q > 1+ lo o |,

k=1,2,...,N -~ 1. There exist constants Kk not depending on q or
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n such that for all q > Q. and all sufficiently large n

- - (k) q S(k+1) |
(12) Mn,nq(bk+l) an < Kk Zﬁ Dn 2
where
q
=—9° _ co-1 -1
(13) Y] DIWIL NS b

A value for Kk will be given below.

Proof. For brevity we set Ibk[ = a, Ibk+1| = b. Denoting by ¢

the mth element of the vector

Y o\(k)
Mn,nq( bk) an .
we have
q%n -m
(14) Ch TP @& S,
where

o= (2)() (2 950
o (g (o YEP

It turne out that the dominant term in the sum S i1is the last term.

Factoring out this term, we have

2 ng-l-m
_fna -1 nq b
(15) S = ( i )(nq " ])(a) Slo

where

ng -m -1 (ng ~m -1)(ng - m ~- 2) (%;2 PO

(nq2 - nq + 2) (ng® - nq + 3)

= 8
Sy =1+ 2+

nq2 -nqg + 2




i:.
f
k
i
F,
F:

ey,

The sum Sy terminates. Since 0 < m < n, it is clearly bounded by

the geometric sum 1 + X + X2 +-+., terminated after the same aumber

of terms, where

X = nq - 1
)
nqg -—-nq + 2

o
L]

Now

ng - 1

ng - 1 1
2 S )
ng“ -ng+2 aqng-1) +g-ng+2 q-1

hence, if q > Qs

1
qQ -1

a
_lb<lo

s <

o

N

Summing the geometric series, we thus have
(16) s, <2k
l =a 'k’

where
a’(qk d l)

X = bla, - 1) -a.°

K

Since q > 2, m < n, we have

(17) (nq 5 l)(‘qn ) 1) < (nnfCll ) (1;312) '

The mt'h element of ﬁék'ﬂ)

_ nq fna\ . .-m
dm - pk+l(m)b 2

ve thus have from (14),(15),(16) and (17)

2 ng 2
nq” -nqfb nq
(28) °n < P Pr+1 (a) (nq) dem'

being given by
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Estimating the factorials by means of Stirling's formula, we have

(nqz) - (ng®) ¢ . 1 [ g2 ]nq,
P4/ (ng)1(n(a® - @)1 N2r(q = Dn L(q - T
and thus, in view of the presence of Jn in the denominator,
2 q ng
ng q
(19) ng ) < o
(a - 1)
for all large n. It thus follows from (18) and (19) that

q nq
-9 _.q-1 b
ep < [(q 1a-l pk"k+1 a Kdn?

which is the desired result.

It follows from (12) that

-l-r(k) “(k) L <K an -H-(k+l) ~(k+1)

b
ng-k-1
and thus, using induction,
N-k _ N-k-l
k) (k) nq ng e oA ()
(20) TT( Sk " Kya & L Zye1 P

We shall estimate D(N) by a bound very similar to that of Lemma 2.
LEMMA 3. Let

(21) qN>1+ |le'

There exists a constant KN’ independent of n or g, such that

the elements of ﬁéN) are bounded by KN Zn

N for all q > A and




= T
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all large n, where

q

- S TP T
(22) Zyg PR pylogl ™

Proof. We bound the elements of the vector ﬁiN) by the sum of
the absolute values of all elements. This sum can be formed by multi-
plying ﬁiN) by the matrix M, (1). An application of the method of
proof of Lemma 2 now yields the bound of Lemma 3, where

_(ay - DIyl

T g ST T Teyl

Oy

In view of (10), (20), and Lemma 3 we find that every element of

RéN) 1s bounded by

N Nk k-l n

’ .00

(23) z Cpfzy 2y zg| >

k=1
where

| .
Ok = Cx By Kxnp Ky

and where the numbers Z, are defined by (13) and (22). The proof of

the theorem now is an easy consequence of the following fact:

LEMMA 4. For k = 1,2,...,N,

(24) lim Z, = 0.
q—}oo
Proof. If we set p, . = |6k+1| =1, we have

- 1y -q q .,
Zk"(l"q) (q—l) pk ck
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for k= 1,2,...,N, where
il il
(25) o = Prrnld el

Relation (24) now follows trivially from the well-known result

Um (1 - 9% =
q+oo g

and from the fact that, by virtue of ka| <1,

lir (q - 1) pg = 0.
q—-+oo

In view of Lemma 4 there certainly exists q* such that ]Zkl <1

for q > q*, k =1,2,...,N. If q > ShY where 4 = max(q*,ql,qz,...,qN),

then all elements of RéN) are bounded by the expression (23), which

tends to zero as n + o, This completes the proof of the theorem.

6. Choice of the enlargement ratio

Once the continuation points 21525500092y and with them the
numbers p, and 3 (k =1,2,...,N), are fixed, the enlargement ratio
g has to satisfy the following conditions: In order to satisfy (11)

and (21) we must have

o)
k
(4) q>1+|b——|, kK =1,2,...,N
k+1
(6N+1 = 1), and in order to make |Zkl <1, we mist require
_at  a
(B) (q-l)q-l Py ck<l’
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i =

-

where Cy is given by (25), or approximately

(26) (q - l)pli1 < e'lclzl, k=1,2,...,N.

Condition (26) shows that unless P, 1s small, q may have to be
taken quite large. Small values of Py» on the other hand, force us

to make N, the number of continuation steps, large. Thus in any case
the continuation matrices Mn,qn are likely to be large. As an example,
we consider the problem of continuing the function 1log z around the

unit circle, starting from z = 1. Choosing the continuation points

ik
zk = e w, where o = % 5

we find

- A = Q _
Py = P = 2 tan 5= 0.535898.

Since all lbkl are the same in the present case, condition (4) is

setisfied for q > 2, and condition (B) simplifies to

(q - 1)p%t < e,

This 1s satisfied for q > 5, but not for q = 4. Since N =12 in
the present problem, even the very first matrix used in the algorithm (7)

has 512 = 244,140,625 colums.

7. Numerical examples

The algorithm (7) has been carried out numerically in some very
simple examples. The author is indebted to Mr. Thomas A. Bray of the
Boeing Scientific Research Laboratories for his expert assistance in
the planning of these computations. We wish to report briefly on the

results of two such computations.




—

(1)

has been continued using the points

The power series

f(z) =1-2+ 2z

enlargement ratio

q =3 was used.

3

- 7 doeoe

2z = 0.35k,

X = 0,1,2,3.

An

The followling teble lists the

first components of the vectors Aflk) s and of the exact vectors A(zk) .
k
n 1 2 3
1 0.740740741 0.588239567 0.492237049
2 0.740740741 0.588235294 0.487767430
3 0.740740741 0.588235294 0.487805203
4 0.740740741 0.588235294 0.487804475
A( zk) 0.740740741 0.588235294 0.487804878

The values in the last column approximate the function at a point where

the original power series does not converge.

were

(II) The power series
n+l 2
f(z) = = (- 2% = g1 log(l + t)dt
n=]1 ' 0
was continued using the poin*s z, = 0.3k, k =0,1,2,3,4. Again working
with q = 3, the following values of the first components of Ain)
found:
k 1 4
n
1 0.280074 0.528107 0.752163 0.956771
2 0.280074 0.528107 0.752163 0.957406
3 0.280074 0.528107 0.752163 0.957405
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